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Abstract

The multi element profile of milk from 12 cows and 6 water buffaloes was investigated, to establish whether dairy products derived
from the two species could be distinguished. Multi-element data were obtained using ICP-MS. Following assessment against the team’s
QA/QC criteria, or where the levels were below the LOD for the procedure, 16 elements (P, S, K, Ca, V, Cr, Mn, Fe, Co, Zn, Ga, Rb, Sr,
Mo, Cs and Ba) were submitted for statistical analysis. Using linear discriminant analysis (LDA) it was possible to differentiate between
milk from the two species, produced under identical environmental and animal husbandry conditions, on one farm. The sources of food
and water available for consumption by the animals were also analysed and the results showed that there was no correlation between the
elemental composition of the dietary components and the profiles observed in the milk.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Milk has always been an important foodstuff; hence it
well have been one of the earliest commodities to be sub-
jected to extension or adulteration (Holeman, 1984), such
as addition of water (Commission Decision (EEC), 1991,
Papps, Voutsinas, & Kondyli, 1994). There are also safety
issues if milk from different animals is used, because many
people are allergic to cows’ milk and therefore choose milk,
cheese and yoghurt from other animals, such as sheep and
goats. If a significant quantity of cow’s milk is added to
such products, without proper labelling, health problems
can result. Another source of risk is the use of mastitic milk
as a replacement feed (Aiello, Napoli, Di Donna, Spina, &
Sindona, 2006). Therefore, there is a need to characterise
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milk from different animals, both as a food commodity
itself and also as a component in other dairy products.

Previous works have shown that trace element profiling
can be used to identify the geographical origin of foodstuff
(Benincasa, Lewis, Perri, Sindona, & Tagarelli, 2007; Bre-
scia, Caldarola, Buccolieri, Dell’Atti & Sacco, 2003; Bre-
scia, Monfreda, Buccolieri, & Carrino, 2005). One
research group reported that multi-element profiling could
distinguish the animal species from which a foodstuff had
derived (Coni, Bocca, Ianni, & Caroli, 1995; Coni et al.,
1996). However, from the data, it was not clear if the geo-
graphical location of the farms had been taken into
account in this study. It is very likely that at least part of
the differences in the trace elements profiles measured in
the milks were due to differences in the underlying geol-
ogy/hydrology of the participating farms.

In the study presented here, samples of milk from a
mixed herd of cows and water buffaloes, having equal
access to identical forage and water (herded in the same
field and had been given similar regimes of veterinary
medicinal care) were analysed by ICP-MS to see if
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physiological differences between the species would result
in differences in the multi-element composition of the prod-
uct. These ‘biomarker’ elements could then be used to iden-
tify situations when fraudulent labelling of the milk, and
associated by products, e.g., mozzarella, had occurred.
The data might also provide an important insight into
the dietary requirements of the two animal species.
2. Materials and methods

2.1. Materials and apparatus

Ultrapure HNO3 (Aristar grade, Merck-BDH, Poole,
Dorset, UK) certified for impurities was used in this work.
Single and multielement standards (Certipur, Merk,
Darmstadt, Germany) were also analytical-reagent grade.
Aqueous solution were prepared using ultrapure water,
with a resistivity of 18.2 MX cm, obtained from a Milli-Q
plus system (Millipore, Bedford, MA, USA). All glassware
was decontaminated with nitric acid (2%, v/v) over night,
rinsed with ultrapure water and dried.

Microwave digestion was carried out using a PerkinEl-
mer ‘Multiwave’ system fitted with 50 mL quartz vessels
capable of 70 bar working pressure (75 bar cut off).

The determination of the elements of interest (P, S, K,
Ca, V, Cr, Mn, Fe, Co, Zn, Ga, Rb, Sr, Mo, Cs and Ba)
was carried out utilizing an Elan 6000 ICP-MS instrument
(Perkin–Elmer Ltd., Beaconsfield, Buckinghamshire, UK).
The ICP-MS operating conditions are listed in Table 1.
2.2. Sampling

Eighteen milk samples were obtained from a Grillo farm
in the Sila mountain (Calabria, Italy), six from water buf-
faloes and twelve from cows.

Manual milking was employed to avoid potential con-
tamination due to metallic containers and tank lorries.
Milk samples were directly put into acid-washed plastic
containers and immediately stored at �20 �C until required
Table 1
Instrumental parameters and operating conditions for the Elan 6000
ICP-MS

RF power (W) 1000
Nebulizer (carrier gas) flow rate (L/min) 0.75
Lens voltage (V) 6.00
Analog stage voltage (V) �1850
Pulse stage voltage (V) 950
Discriminator threshold (V) 70
Quadrupole rod offset (V) 0
Resolution (amu) 0.70
Detector Dual
Speed of peristaltic pump (rpm) 24
Sweeps/reading 40
Replicates 6
Dwell time 50 ms
Scan mode Peak hopping
for analysis. Samples of the animal feed (fresh and dried)
and drinking water (river and pool) available to the ani-
mals were also obtained for analysis.
2.3. Analytical procedure

Milk samples (4 mL), fresh and dried forage (0.5 g),
water from river and pool (4 mL), were quantitatively
transferred to the quartz vessel of a microwave digestion
system and concentrated nitric acid (5 mL) added. The
operating conditions used for the microwave digestion sys-
tem is presented in Table 2.

After digestion the digested liquor was quantitatively
transferred to a graduated polypropylene test-tube and
made up to volume (10 mL) with ultrapure water. 1 mL
of the resulting solution was transferred a second time to
a test tube and made up to volume (5 mL) using ultrapure
water. In order to check the performance of the instrument,
hence the instrument drifts, before performing ICP-MS
analysis, 100 ll of a solution containing Indium was added
to each test tube as internal standard to make up a final
concentration of 50 lg/L. To validate the experimental
procedure, two multi-elemental certified reference materials
were randomly distributed in the analytical sequence, NIST
1547 (peach leaves) and NIST 8435 (whole milk powder)
and were randomly distributed between the other samples.

The analytical batch consisted of a set of calibration
standards, that were analysed at the beginning of the run,
the samples, and, all distributed between them, a minimum
of four procedural blanks, one procedural blank spiked
with a standard solution containing the elements of interest
and the certificate reference materials. To check the quality
of the run, at the end of the run, a mid-range calibration
standard was analysed a second time. The whole analysis
was considered valid if the value of the same calibration
standard analysed at the beginning and at the end of the
run gave a value lower than 20%. Furthermore, the perfor-
mance of the instrument was good as the response of the
internal standard, contained in each solution analysed,
gave always the same response throughout the whole
analysis.

The limit of detection were defined as three times the
standard deviation of the signal from reagent blanks, after
correction for sample weight and dilution. The blanks were
used to calculate this value only. So, all the elements that
were below this value were not accepted.
Table 2
Microwave digestion program

Step Power (W) Time (min)

1 0–500 2
2 500 5
3 500–1000 2
4 1000 20
5 0 15



Table 4
Mean concentration and standard deviation of elements (lg/kg) in milk
samples by ICP-MS

Element Water buffalo Mean value Cow Mean value

P 1.19 � 106 (14) 7.75 � 105 (12)
S 3.57 � 105 (15) 2.66 � 105 (19)
K 6.41 � 105 (11) 1.19 � 106 (18)
Ca 1.74 � 106 (15) 1.22 � 106 (15)
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2.4. Calibration procedure

A five point calibration curve covering the range 0.01–
100 lg/L with 50 lg/L of indium as internal standard
was used for the quantitative analysis of samples. Solutions
of appropriate concentration were obtained by dilution of
a 1000 lg/mL element standard solution of P, S, K, Ca, V,
Cr, Mn, Fe, Co, Zn, Ga, Rb, Sr, Mo, Cs, Ba.
V 4.10 (17) 2.93 (20)
Cr 0.34 (7) 9.38 (18)
Mn 2.47 (24) 31.9 (17)
Fe 301 (18) 325 (13)
Co 2.10 (20) 1.44 (19)
Zn 6488 (20) 3814 (20)
Ga 3.50 (17) 2.24 (13)
Rb 1440 (19) 2088 (15)
Sr 749 (11) 698 (17)
2.5. Statistical analysis

Principal Component Analysis (PCA) was performed by
Statistica 7.1 (StatSoft 2005 Edition) and Linear Discriminant
Analysis (LDA) was executed by V-Parvus 84 2004 (Forina,
Lanteri, Armanino, Cerrato Oliveros, & Casolino, 2004).
Mo 16.9 (16) 29.0 (24)
Cs 3.56 (17) 2.51 (20)
Ba 330 (17) 226 (14)
3. Result and discussion

3.1. Quality control and quality assurance data

Initially, about 50 elements were investigated but only
16 were submitted for statistical analysis. The criteria uti-
lized to select those elements were as follow: recovery data
were accepted if results were in the range of 60–140%, with
75% within 80–120% and for CRM values, within 40%.
The results must be not below the limit of detection
(LOD). The replicate agreement was considered acceptable
if the value of the RSD was minor of 20%. Table 3 details
the LOD values and the percentage recovery of a known
amount of analyte spiked for the 16 elements investigated.
Table 3 also presents mean, standard deviation (n = 3) and
percentage recovery of the 12 elements for which the
CRMs quote a certified value.
Table 3
Limit of detection (LOD), percentage recovery of a spike solution and quality

Element Spike recovery (%) LOD (lg/g) N8435

Found (lg/g) Certified (l

31P 99 1.2 5840 ± 240 7800 ± 49
34S 100 82 2000 ± 170 2650 ± 35
39K 107 0.57 11160 ± 420 13630 ± 47
43Ca 109 1.1 7820 ± 350 9220 ± 49
51V 97 0.001 0.011 ± 0.004 n/a
53Cr 118 0.004 0.42 ± 0.05 (0.5)
55Mn 125 0.005 0.174 ± 0.085 0.17 ± 1.1
56Fe 117 0.16 174 ± 15 n/a
59Co 95 0.001 0.068 ± 0.007 n/a
66Zn 100 0.079 25.0 ± 2.9 28.0 ± 3.1
71Ga 100 0.001 0.018 ± 0.005 n/a
85Rb 116 0.001 12.9 ± 0.9 (16)
88Sr 118 0.010 3.64 ± 0.5 4.35 ± 0.5
95Mo 102 0.005 0.21 ± 0.12 0.29 ± 0.1
133Cs 99 0.001 0.017 ± 0.004 n/a
138Ba 120 0.001 0.58 ± 0.17 0.58 ± 0.2

Certified values without standard deviation are reported in parenthesis.
In order to check the sensitivity and the reproducibility
of the digestion procedure, one cow’s milk and one water
buffalo’s milk samples were digested three times. The rela-
tive standard deviations obtained were very good: the RSD
values for the element concentrations in cow’s milk were
between 0.5% and 7%, whereas Mn, Cs, Rb and Co gave
a value between 10% and 11.5%. The analysis for water
buffaloes produced a slightly higher RSD values that were
between 1.5% and 10%, whereas Mn, Fe, Ga, S, K and Ca
gave a value between 11% and 13.8%.

Table 4 summarises the mean value (lg/kg) and the
standard deviation of all samples analysed in this study,
for each element investigated.
assurance material performance data (NIST 8435 and NIST 1547)

N1547

g/g) Accuracy (%) Found (lg/g) Certified (lg/g) Accuracy (%)

0 74.9 1280 ± 65 1370 ± 70 93.7
0 75.5 0.86 ± 0.21 n/a n/a
0 81.9 21200 ± 210 24300 ± 300 87.3
0 84.8 13500 ± 150 15600 ± 200 86.8

n/a 0.29 ± 0.03 0.37 ± 0.03 77.6
84.0 0.85 ± 0.14 (1) 85.0

102.4 75 ± 3 98 ± 3 76.1
n/a 174 ± 13 218 ± 14 79.7
n/a 0.068 ± 0.008 (0.07) 97.1
89.3 16.8 ± 0.8 17.9 ± 0.4 93.7

n/a 0.083 ± 0.011 n/a n/a
80.9 17.2 ± 0.4 19.7 ± 1.2 87.2
83.7 42 ± 4 53 ± 4 78.6
71.4 0.051 ± 0.004 0.060 ± 0.001 85.0

n/a 0.071 ± 0.004 n/a n/a
99.5 101 ± 5 124 ± 4 81.8
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3.2. Statistical analysis of multi-element data

Principal component analysis (PCA) is the basic tool for
data analysis. PCA is very important to gather an overview
of data, especially in the preliminary steps of a multivariate
analysis. It is a powerful visualization tool and provides a
way to reduce the dimensionality of the data and allows
elimination of unnecessary information. With PCA, matrix
decomposition decreases a large number of variables into a
smaller set of components by investigating the correlation
between variables. These components give linear combina-
tion of variables which account for more of the variance
than any other combination (Hair, Anderson, & Tatham,
1987; Sharaf, Illman, & Kowalski, 1986; Vandeginste
et al., 1998). Score plots represent the projections of the
objects (samples) in the planes defined by principal compo-
nents, whereas loading plots represent the projection of the
original variables in the same planes. Samples close to each
other in the score plot can be considered similar, and, for
instance, object that are projected in the left in the graph
have high values for variables placed to the left in the load-
ing plot. The absolute value of the loading in a component
(between 0 and 1) describes the importance of the contribu-
tion of the component, so the more a variable is far from
origin, the greater its contribution is in the statistic model
generated by PCA. Moreover, the variables that are near
each other in the loading plot are positively correlated,
whereas variables that are projected opposite to each other
are negatively correlated.

In the present work PCA have been applied to the con-
centration of 16 elements of each single sample. The plot of
scores of the samples and loadings of the variables on the
two first principal components are plotted in Fig. 1.

Cow and buffalo milks are clearly separated on the first
principal component score, which shows 46.68% of the
total variance, with water buffalo milk samples represented
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Fig. 1. Biplot of principal component scores and loadings (s cow, h buf-
falo, + variable).
by low scores and cows milk represented by high scores.
The examination of the loading plot provides insights into
the discrimination of the variables mainly contributing to
PC1. Ca, P, Ga, Zn, Mn, Ba and S have the highest abso-
lute loading values on the PC1, all of them being negative.
Accordingly, these variables are higher in the water buffalo
milk samples (negative scores on PC1). On the contrary, K
and Rb are the elements present at higher concentration in
cow milk samples.

One of the most commonly used classification tech-
niques is linear discriminant analysis (LDA). This tool
allows classifying unknown samples after checking of pos-
sible differentiation of samples of known origin. LDA
derives linear combinations of the independent variables
that best discriminate between the defined groups, by max-
imizing the variance between groups and by minimizing the
variance within each group in such a way that outsider can
be identified more lightly than by PCA. It must be pointed
out that LDA require the data matrices for each category
to have an high ratio between the number of training sam-
ples and the number of variables used. Discriminant anal-
ysis using a low ratio of samples to variables generates an
unstable model and analysis is also weakened by the pres-
ence of redundant information (highly correlated vari-
ables), which yield a less robust model. Accordingly, in
the present study PCA have again been applied to the con-
centration of the nine elements of each single sample
mainly contributing to separation of the groups (Ca, P,
Ga, Zn, Mn, Ba, S, K and Rb).

The first two principal components account for 87.12%
of the total available information, so coordinates of scores
for these PCs can be submitted to LD analysis, using two
groups corresponding to the two types of milk, as input a
priori. The scores of the first two roots produced from
LDA showed a clear separation between cow and buffalo
milks (Table 5).
Table 5
Scores of the first two roots produced from LDA

Sample Root 1 Root 2

Cow 1 �5.24223 �0.60863
Cow 2 �8.35870 0.94960
Cow 3 �11.88722 2.71386
Cow 4 �10.71974 2.13012
Cow 5 �6.32821 �0.06564
Cow 6 �9.50743 1.52397
Cow 7 �4.43730 �1.01110
Cow 8 �5.65215 �0.40367
Cow 9 �8.65207 1.09629
Cow 10 �12.94881 3.24466
Cow 11 �6.25332 �0.10309
Cow 12 �13.36469 3.45260
Buffalo 1 6.72712 �6.59331
Buffalo 2 6.29100 �6.37524
Buffalo 3 0.73804 �3.59876
Buffalo 4 5.38709 �5.92329
Buffalo 5 1.54363 �4.00156
Buffalo 6 5.15109 �5.80529
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In this case, an acceptable sample/variable ratio (18:2)
was used and a robust model should be obtained. In
fact, from a statistical point of view, the high value
(36.33) of the F (2.15) parameter indicates a significant
difference among the means of the groups, whereas the
information from data treatment is characterized by a
high degree of reliability since the p level is extremely
low (<0.00001).

The effectiveness of a classification technique in predict-
ing the group of unknown object (sample) can be achieved
by several validation procedures. The common validation
technique is cross-validation. The sample set was divided
into training set including 16 samples and into validation
set which contain 2 samples. The first one was used to gener-
ate the model whereas the validation set was used to validate
the model. The training and validation sets were randomly
selected from all samples. The prediction capacity of the
LDA model was determined by analyzing the validation
set of samples that had not been used at any time to construct
the model. In other words, all milk samples but two were
used for calculating discriminant functions, and then the
samples of the validation set was used as unknown, and
classified. The procedure was repeatedly carried out for all
samples. The proposed model predicts correctly all observa-
tions. The results obtained should be considered as a first
approach to the classification of the origin of milk useful
for further prediction. A wider application of the method,
although it works satisfactory in the examined case, will
require a larger number of samples from selected origins.

3.3. Dietary inputs

Two sources of water (river and pool) and two sources
of forage (fresh and dried) were available to the cows
and water buffalo. The concentration of the elements in
the water coming from the river is higher than the concen-
tration of the elements in the water coming from the pool.
Several elements couldn’t be quantified in the forage. How-
ever, the fresh forage seem to have an higher value of these
elements.

No significant correlation was found between mean con-
centration of elements in the water sources and the milk
types (p = 0.90) nor between the element profiles in milk
and forages (p = 0.92). Hence the difference observed
between cows and buffalo are not due to food or water.

3.4. Physiological differences

Even though the digestive tract of the two species are
very similar, it has been reported that buffalo have longer
retention time of feed in their digestive system and greater
digestive efficiency than cattle (Appleton, Dryden, & Kon-
dos, 1976; Koch, Jung, Crouse, Varel, & Cundiff, 1995;
Schaefer, Young, & Chimwano, 1978).

The higher efficiency would have a pronounced effect on
the animal’s mineral absorption behaviour, and is reflected
in the data presented here. It has been reported that longer
feed retention would allow buffaloes more time to digest
the high levels of fibre in feeds such as sedges and grasses,
releasing minerals and vitamins which would otherwise
have not been available for absorption in the large and
small intestines (Ensminger, Oldfield, & Heinemann,
1990; Commission Regulation (EEC), 1992).

Currently, all mineral (and vitamin) requirements for
water buffalo have been based on beef cattle requirements.
However, the data presented in this work indicate that the
mineral requirements of water buffalo should be re-
assessed.

4. Conclusions

The results presented in this work show that the discrimi-
nation between cow’s and water buffalo’s milk can be
achieved by a simple and rapid method, such as ICP-MS,
which allows a simultaneous quantitative determination
of the elements of interest present in the foodstuff. As the
herd containing the two species were restricted to a single
geographical locale, the observed differences can not be
attributed to the animals having access to different water
or food sources.

The linear discriminant analysis model classifies correctly
the origin of the all samples of examined milks, indicating
that these analytical parameters may warrant further inves-
tigation as indicators of fraudulent marketing practices.

Future work will involve to build up a bigger set of data
in order to see if it is possible to discriminate between the two
milks coming from different farms; to investigate the physio-
logical attributes that result in such a pronounced difference
in the mineral absorption between the two animal species;
whether the differences described in this work, are still appar-
ent after processing into dairy products such as cheese.
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